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• A discriminative problem: for some input x, find 
the most likely y in a set  

• A discriminative model directly models p(y | x) 
   logistic/linear/… regressions, MLPs, CRFs, MEMMs, seq2seq(+att) 
 

• A generative model for a discriminative problem 
models p(x, y), often by breaking it into p(y)p(x | y) 
   Naive Bayes, GMMs, HMMs, PCFGs, the IBM translation models
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But why?

(Chiu et al., last week)

(Bentivogli et al., 2016)



• “Human-like learning” looks more like model building+inference than 
optimizing pattern recognition functions (Lake et al., 2015) 

• Generative models may be more sample efficient than equivalent 
discriminative models (Ng & Jordan, 2001) 

• In some domains, we can build (relatively) accurate models of data 
generation → even better sample efficiency 

• Exploit alternative data/variables: zero shot learning, learning from unpaired 
samples, semisupervised learning, exploit natural conditional independencies 

• Reduce label bias when producing sequential outputs 

• Safety considerations: model introspection by sampling, generative models 
“know what they know”

Why generative models? 
Five reasons
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But didn’t we use generative models  
and give them up for some reason?



• To use “generative models for discriminative problems” we must model 
complex distributions (sentences, documents, speech, images) 

• Complex distributions → lots of bad independence assumptions 
        (naive Bayes, n-grams, HMMs, statistical translation models) 

• But: neural networks let the learner figure out their own 
independence assumptions! 

• Using generative models require solving difficult inference problems 

• Inference problems are especially difficult when you get rid of the 
“bad independence assumptions”! 

• You aren’t “optimizing the task”!

Why not generative models? 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• Text categorization 

• Syntactic parsing 

• Sequence to sequence transduction

POLITICSx = y =

y =
x = Colorless green ideas 

sleep furiously

Case studies 

x = Welcome to Okinawa y =沖縄へようこそ。
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• Supervised classification 

• Sample efficiency of a generative-discriminative 
pair (Ng and Jordan, 2001)  

• How well do generative models do on standard 
datasets “at scale”? 

• How well do generative models do across a 
range of data conditions?

Experimental setup 
Text categorization

(Yogatama, D, et al., arXiv 2017) 



L(W) =

X

i

log p(yi | xi;W)

y

x1 x2 x3 x4 x5

X

p(y | x)

Discriminative model 
Text categorization



x1 x2 x3 x4

vy

x2 x3 x4 x5

L(W) =

X

i

log p(xi | yi)p(yi)

p(x2 | x<2, y) p(x3 | x<3, y) p(x4 | x<4, y) p(x5 | x<5, y)

Generative model 
Text categorization

p(y)



AGNews DBPedia Yahoo Yelp Binary

Bag of Words
(Zhang et al., 2015) 88.8 96.6 68.9 92.2

char-CRNN
(Xiao and Cho, 2016) 91.4 98.6 71.7 94.5

very deep CNN
(Conneau et al., 2016) 91.3 98.7 73.4 95.7

Discriminative LSTM 92.1 98.7 73.7 92.6

Naive Bayes 90.0 96.0 68.7 86.0

Kneser-Ney Bayes 89.3 95.4 69.3 81.8

Generative LSTM 90.7 94.8 70.5 90.0

Supervised text categorization 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• Generative models of text approach their 
asymptotic errors more rapidly (better in small-
data regime).

• Discriminative models of text have lower 
asymptotic errors, faster training and 
inference time, and a good estimate of p(x)

Discussion 

• The downside is inference is expensive. We 
have to evaluate the likelihood of the document 
for every class!
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• Generate symbols sequentially using an RNN 

• Add some control symbols to rewrite the history 
occasionally 

• Occasionally compress a sequence into a constituent 

• RNN predicts next terminal/control symbol based on the 
history of compressed elements and non-compressed 
terminals 

• This is a top-down, left-to-right generation of a 
tree+sequence

Syntactic parsing 
Recurrent Neural Net Grammars

(D, et al., ACL 2016; Kuncoro, D, et al., EACL 2017) 
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• Generate symbols sequentially using an RNN 

• Add some control symbols to rewrite the history 
occasionally 

• Occasionally compress a sequence into a constituent 

• RNN predicts next terminal/control symbol based on the 
history of compressed elements and non-compressed 
terminals 

• This is a top-down, left-to-right generation of a 
tree+sequence (other traversal orders are possible)

Syntactic parsing 
Recurrent Neural Net Grammars

(D, et al., ACL 2016; Kuncoro, D, et al., EACL 2017) 



The hungry cat meows loudly

Example derivation 



stack action

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

(S (NP The hungry cat )

(S (NP The hungry cat)

Compress “The hungry cat”  
into a single composite symbol

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)



stack action

GEN(meows)

REDUCE

(S (NP The hungry cat) (VP meows) GEN(.)

REDUCE

(S (NP The hungry cat) (VP meows) .)

(S (NP The hungry cat) (VP meows) .

(S (NP The hungry cat) (VP meows

(S (NP The hungry cat) (VP

(S (NP The hungry cat)

NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

NT(VP) p(nt(VP) | (S,
(NP The hungry cat))

probability



• Valid (tree, string) pairs are in bijection to valid sequences of 
actions (specifically, the DFS, left-to-right traversal of the 
trees) 

• Every stack configuration perfectly encodes the complete 
history of actions. 

• Therefore, the probability decomposition is justified by the 
chain rule, i.e.

(chain rule)

(prop 2)

p(x,y) = p(actions(x,y))

p(actions(x,y)) =
Y

i

p(ai | a<i)

=
Y

i

p(ai | stack(a<i))

(prop 1)

Deriving the model 



Modeling the next action 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1. unbounded depth

1. Unbounded depth → recurrent neural nets

h1 h2 h3 h4
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Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai | )

1. Unbounded depth → recurrent neural nets

h1 h2 h3 h4

2. arbitrarily complex trees

2. Arbitrarily complex trees → recursive neural nets
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What head type?

Syntactic composition 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TheNP cat    )    NP    (    

(NP The (ADJP very hungry) cat)
Need representation for: (NP The hungry cat)
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v

v

Syntactic composition 
Recursion



Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai | )

1. Unbounded depth → recurrent neural nets
2. Arbitrarily complex trees → recursive neural nets

⇠REDUCE

h1 h2 h3 h4

(S (NP The hungry cat) (VP meows)p(ai+1 | )
3. limited updates 

3. Limited updates to state → stack RNNs
(D, et al., ACL 2015; Ballesteros, D, et al., EMNLP 2015) 



• In text categorization, it was not really a problem to 
exhaustively evaluate all candidate y’s. 

• Here, we can’t do that — we have O(2|x|) candidates! 

• Outline of the solution 

• Learn a tractable instrumental distribution, q(y | x), 
which approximates the posterior over trees 

• Use importance sampling to solve the inference 
problems (maximization, marginalization) we care about

Inference 



Type F1

Petrov and Klein (2007) Gen 90.1

Shindo et al (2012) 
Single model

Gen 91.1
Vinyals et al (2015) 
PTB only

Disc 90.5

Shindo et al (2012) 
Ensemble

Gen+Ensemble 92.4

Vinyals et al (2015) 
Semisupervised

Disc+SemiSup 92.8

Discriminative  
PTB only

Disc 91.7
Generative  
PTB only

Gen 93.6
Choe and Charniak (2016) 
Semisupervised

Gen 
+SemiSup 93.8

Fried et al. (2017) Gen+Semi 
+Ensemble 94.7

Results: Parsing 
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• RNNGs are effective both for modeling language 
and parsing 

• Generative parser outperforms discriminative 
parser 

• Expectation: the discriminative model would do 
better with more data 

• We are in the “generative” regime!

Discussion 
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• Sequence to sequence transduction
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• State of the art performance in most applications 

• Two serious problems that concern us: 

• Nontrivial to use “unpaired” samples of x or y to train the model 

• “Explaining away effects” - models like this learn to ignore 
“inconvenient” inputs (i.e., x), in favor of high probability 
continuations of an output prefix (y<i)

Seq2Seq Modeling 
Direct model

(Yu, D, et al., ICLR 2017) 



Label bias is a species of “explaining away” that  
causes trouble in directed (locally normalized) models.

a b c x y z→
a b c’ x y z→
a b’ c x y z→

d w→

a b’ d x y z→

Seq2Seq Modeling 
What is label bias?



Seq2Seq Modeling 
Generative model



“Source model” “Channel model”
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“Source model” “Channel model”

The world is colorful because of the 
Internet. 世界はインターネット 

のためにカラフルです。

Seq2Seq Modeling 
Generative model



“Source model” “Channel model”

The world is colorful because of the 
Internet.

Source model can be estimated from 
unpaired y’s

Seq2Seq Modeling 
Generative model

世界はインターネット 
のためにカラフルです。



“Source model” “Channel model”

The world is colorful because of the 
Internet.

Seq2Seq Modeling 
Generative model

Inference model form avoids explaining 
away of inputs (“label bias”).

世界はインターネット 
のためにカラフルです。



• Question: Can we use neural network component 
models without bad independence assumptions?

• Training — straightforward 

• Decoding — challenging

Seq2Seq Modeling 
Generative model



• Some bad initial results 

• The IS algorithm we proposed hurt us unless the 
number of samples (k) was massive 

• Reranking an k-best list from a direct model 
didn’t help unless k was even bigger 

• Question: can we develop a left-to-right decoder 
for a noisy channel MT model?

Decoding 



Direct model:

Decoding 
Direct vs. generative
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Chain rule!
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Direct model:

Not perfect, but

Chain rule!

(Compare to using greedy decoding with MEMMs)

Decoding 
Direct vs. generative



Generative model (naive):
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Generative model (naive):

Chain rule!
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Generative model (naive):

Probability doesn’t work 
like this.

Decoding 
Direct vs. generative



Outline of solution:

Introduce a latent variable z that determines when enough of the 
conditioning context has been read to generate another symbol

How much of y do we need to read to model the jth token of x?

Decoding 
Direct vs. generative



Conditioning context

Output sequence

Introduced as a direct model by 
Yu et al. (2016)

It’s a good direct model

It also is exactly what we need  
for the channel model

Similar model: Graves (2012)

The Segment to Segment Model 



Expensive to go through every token yj in the vocabulary and calculate

Use an auxiliary direct model q(y, z | x) to guide the search.

y

Decoding with an auxiliary model 



Possible proposals:

Chinese markets open

Chinese markets closed

Market close

Financial markets

Decoding with an auxiliary model 



Possible proposals:

Chinese markets open

Chinese markets closed

Market close

Financial markets

Expanded objective 

Decoding with an auxiliary model 



• Medium-sized Chinese-English news parallel data 

• Large LSTM language model trained on English 
news + target side of parallel data 

• Evaluation using BLEU-4 (higher is better)

Experiments 
Machine translation
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• Generative can be used well for “discriminative problems” 

• Especially in data-restricted scenarios 

• Especially with neural nets, which let us define great generative 
models 

• Open questions 

• Inference is hard, but there are lots of exciting possibilities for 
learning to do inference 

• Is there a theoretical account for when a particular dataset is in 
the “generative” vs. “discriminative” regime and where the 
crossover point is?

Conclusions 



Thank you!



• Generative models also provide an estimate of p(x)

• The likelihood of the input is a good estimate of “what the model 
knows”. Examples that fall out of this are a good indication that the 
model should stop what it’s doing and get help.

Outlier detection 



• Learn (label) concepts, to be used as class embeddings       from an 
auxiliary task

• For example, from a large unannotated corpus, learn standard word 
embeddings and use them as class embeddings

• Fix the class embeddings during training

• When we see a new class, use the word embedding for the class

• Train on                classes

• Predict for all classes

n� 1

vy

Zero-shot learning 



Class Precision Recall Accuracy

company 98.9 46.6 93.3

educational institution 99.2 49.5 92.8

athlete 96.5 90.1 94.6

means of transportation 96.5 74.3 94.2

building 99.9 37.7 92.1

natural place 98.9 88.2 95.4

village 99.9 68.1 93.8

animal 99.7 68.1 93.8

plant 99.2 76.9 94.3

film 99.4 73.3 94.5

written work 93.8 26.5 91.3

AVERAGE 98.3 63.6 93.6

Zero-shot learning 



q(y | x)Assume we’ve got a conditional distribution
p(x,y) > 0 =) q(y | x) > 0
y ⇠ q(y | x)

(i)
(ii) is tractable and

q(y | x)(iii) is tractable

s.t.

w(x,y) =
p(x,y)

q(y | x)Let the importance weights

p(x) =
X

y2Y(x)

p(x,y) =
X

y2Y(x)

w(x,y)q(y | x)

= E
y⇠q(y|x)w(x,y)

Inference 
Importance sampling



p(x) =
X

y2Y(x)

p(x,y) =
X

y2Y(x)

w(x,y)q(y | x)

= E
y⇠q(y|x)w(x,y)

Replace this expectation with its Monte Carlo  
estimate.

y

(i) ⇠ q(y | x) for i 2 {1, 2, . . . , N}

Eq(y|x)w(x,y)
MC⇡ 1

N

NX

i=1

w(x,y(i))

Inference 
Importance sampling



Perplexity

5-gram IKN 169.3

LSTM LM 113.4

Generative (IS) 102.4

Results: Language modeling 


